Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 12: 653517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093402

RESUMO

Background: Nav1.2 encoded by the SCN2A gene is a brain-expressed voltage-gated sodium channel known to be associated with neurodevelopment disorders ranging from benign familial neonatal infantile seizures (BFIS) to developmental and epileptic encephalopathy (DEE) and autism spectrum disorder. Interestingly, status epilepticus during slow sleep (ESES), which aggravates cognitive impairment, has been found in SCN2A-related epilepsy. However, the functional features and the relationship between SCN2A and ESES have not been researched. Method: We herein investigated the functional consequences of an unpublished de novo V911A and the other two published variants in patients with SCN2A-related disorder and ESES by whole-cell patch-clamp studies in transfected HEK293T cells. Results: The unpublished V911A and published K1933M variants detected in patients with DEE exhibited a profound gain-of-functional (GOF) change. Another published BFIS variant S863F significantly reduced current density as a loss-of-functional (LOF) change. The refractory epilepsy in the patient with V911A was controlled by using the precise treatment of oxcarbazepine (OXC) since the age of 3 months. ESES was found at 18 months during the seizure-free period. We finally chose an aggressive treatment for eliminating ESES by using methylprednisolone combined with levetiracetam and nitrazepam instead of the precise treatment of OXC. Conclusion: Both GOF and LOF variants in the SCN2A gene can lead to ESES among the phenotypes of DEE and BFIS. We should monitor the electroencephalogram regularly in the patients with SCN2A-related epilepsy even during their seizure-free period.

2.
Clin Genet ; 94(6): 512-520, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30182498

RESUMO

Epilepsy is a common and genetically heterogeneous disorder among children. Advances in next-generation sequencing have revealed that numerous epilepsy genes, helped us improve the understanding of mechanisms underlying epileptogenesis, and guided the development of treatments. We identified 39 candidate variants in 21 genes, including 37 that were pathogenic or likely pathogenic variants according to the American College of Medical Genetics and Genomics scoring system and two variants of uncertain significance that were considered causative after they were associated with clinical characteristics. Thirty were de novo variants (76.9%), and 20 variants had not previously been reported (51.3%). We obtained a diagnosis in 39 of the 141 probands (27.7%). The most frequently mutated gene was SCN1A; KCNQ2, KCNT1, PCDH19, STXBP1, SCN2A, TSC2, and PRRT2 were mutated in more than one individual; ANKRD11, CDKL5, DCX, DEPDC5, GABRB3, GRIN2A, IQSEC2, KCNA2, KCNB1, KCNJ6, TSC1, SCN9A, and SCN1B were mutated in a single individual. In addition, we detected a nonsense variant in a candidate gene KCND1 and considered it as a new candidate epilepsy gene, which needed further functional study. Consequently, large number of unreported variants were detected, diverse phenotypes were associated with known epilepsy genes. Changes in clinical management beyond genetic counseling were suggested.


Assuntos
Epilepsia/diagnóstico , Epilepsia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Fenótipo , Fatores Etários , Alelos , Povo Asiático , Criança , Pré-Escolar , China , Eletroencefalografia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...